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Effect of angular momentum on equilibrium properties of a self-gravitating system
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The microcanonical properties of a two-dimensional systemNoflassical particles interacting via a
smoothed Newtonian potential, as a function of the total en&a@nd the total angular momentuln are
discussed. The two first moments of the distribution of the linear momentum of a given particle at a fixed
position show tha{a) on average the system rotates like a solid body dmdhe velocity dispersion is a
function of the distance from the center. In order to estimate suitable observables, a numerical method based on
an importance sampling algorithm is presented. The entropy susfabhews a negative specific heat capacity
region at fixedL for all L. Observables probing the average mass distribution are used to understand the link
between thermostatistical properties and the spatial distribution of particles. In order to define a phase in a
nonextensive system, we introduce a more general observable than that proposed by Gross and[¥atyakov
Phys. J. B15, 115(2000]. This observable is the sign of the largest eigenvalue of the Hessian matrix of the
entropy surface. If it is negative then the system is in a fgsirgle phase; if it is positive then the system
undergoes a first order phase transition. At |gthe gravitational system is in a homogeneous gas phase. At
low E there are several collapse phasesLAtO there is a single-cluster phase andlict O there are several
phases with two clusters. The relative size of the clusters dependsAdinthese pure phases are separated by
a first order phase transition region. Signals of critical behavior emerge at several points of the parameter space
(E,L). We also show that a huge loss of information appears if we treat the system as a function of the
intensive parameters. Besides the known nonequivalence at first order phase transitions, the pure phases with
two clusters of different sizes are not accessible to the canonical ensemble. Moreover, for a particular choice
of intensive parameters introduced in this paper, there exist in the microcanonical ensemble some values of
those intensive parameters for which the corresponding canonical enseogslenot existi.e., the partition
sumdiverges
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[. INTRODUCTION (the systems are not self-boundleshd short distance singu-
larities in the interaction potential. However there exist inter-
The thermostatistical properties of systemd\oflassical mediate stages where these two effects might be neglected
particles under a long-range attractive potential have beeand a quasiequilibrium state might be reachldgnamical
extensively studied since the seminal work of Antonovissues like ergodicity, mixing, or “approach to equilibrium”
[1-7]. One of their more specific and interesting properties i§7,27,2§ are not considered in this papeln order to make
that they are unstable for aN [2] and, therefore, not ther- the existence of equilibrium configurations possible we have,
modynamically extensive, i.e., they exhibit negative specifidirst, to bound the system in an artificial box and, second, to
heat capacity regions even when the system is composed layld a short distance cutoff to the potential. The latter point
a very large number of particles. can be seen as an attempt to take into account the appearance
It is quite natural to ask whether the total angular momen-of new physics at very short distandedout the influence of
tum L, which is an integral of motion for systems of rel- this short distance cutoff s¢29—31]). Another way to avoid
evance in astrophysical context, plays a nontrivial role on thehe difficulties due to the short distance singularity is to de-
equilibrium properties of these systems. Indéeis consid-  scribe the function of distribution of the “stars” within
ered as an important parameter in order to understand theermi-Dirac statistic$3,32].
physics of systems such as galaxXigs 10|, globular clusters The box breaks the translational symmetry of the system;
[11-14, molecular clouds in the multifragmentation regime therefore the total linear momentuPhand angular momen-
[15,16, which might eventually lead to stellar formation tum with respect to the center of mass of the systeane not
[17-22,25. conserved. Nevertheless we assume that the equilibration
Previous works have already studied the effedt @i the  time is smaller than the characteristic time after which the
mean field limit with a simplified potential and by imposing box plays a significant rol€13,26. ThereforeP andL are
a spherical symmetr}26], or atL=0 [13]. Our work, pre- considered agquasi) conserved quantities. We put the cen-
sented in this paper, is an attempt to overcome some of theser of the box at the center of maRs,,, which is also set to
approximations. be the center of the coordinates. TherefBre 0.
Thermodynamical equilibrium does not exist for Newton-  As already mentioned, self-gravitating systems are nonex-
ian self-gravitating systems, due both to evaporation of stargensive and a statistical description based on their intensive
parametergcanonical ensembjeshould be taken with cau-
tion since the different statistical ensembles are only equiva-
*Corresponding author. Email address: fliegans@rhrk.uni-kl.de lent at the thermodynamical limit far from first order transi-
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tions (see Sec. Il ). Moreover, this limit, which is not S(E,L,N)=In[W(E,L,N)], 3
defined for self-gravitating systems, is required in order to
define phases and phase transitions if one fixes the intensiyghere W(E,L,N) is the volume of the accessible phase
parameterd33]. In contrast, the microcanonical ensemble space withE, L, andN fixed (under the assumptions given in
(ME) does not require this limit and allows a classification of gec )
phase transitions for finite-size systefigg},35. Hence the
considered system is studied within the natural ME frame- 1 N /g

K. = pidg, ) 5@ _
wor W(E,L,N)= H( )5<E M) S (E p.)

In order to perform the computation in a reasonable time Nt =1\ (27h)2 i
we have to consider a two-dimensional system.

The paper is organized as follows. In Sec. Il we recall the N
analytical expressions for entropy and its derivativ8sc.
Il A), generalize the definition of phase transitions for non-
extensive systems proposed[B¥] (Sec. Il B), discuss the whereq X p=qlp?—q’pi. After integration over the mo-
two first moments of the distribution of the linear momentummenta, Eq(4) becomeg26,3§
of a given particle at a fixed positidisec. Il Q, and present
a numerical method based on an importance sampling algo- 1
rithm in order to estimate suitable observabi&gc. Il D). W(E,L,N):CJ dog—=EN 52, (5
Numerical results are presented in Sec. Ill; the link between ve I
the average mass distribution and the thermostatistical prop-
erties is made in Sec. Il B. In Sec. Il C we use the defini-where
tion of phase introduced in Sec. Il B to draw the phase dia-
gram of the self-gravitating system as a function of its energy
E and angular momenturh. Finally, we introduce a non-
standard canonical ensemb{&BE). This ensemble is a C=
function of the(intensive variables conjugate d& andL?. It (2% )2NN! ( > m ) ['(N=3/2)
is inspired from another nonstandard canonical ensemble in- [
troduced in[23], see[24]. We discuss the results obtained
from GBE and also from the standard canonical ensemblds a constant) =3;m;q? is the inertial momentum, anl,
For our model we show how the predictions using these=E—L?/2I — ¢ is the remaining energy. From the point of
ensembles are inaccurate and mislead®eg. Il D). Results  view of the remaining energy, If #0 we can already notice

5(2)<2i qi), (4)

L_Z Gi X Py

(277)(N73/2)H m;
I

are summarized and discussed in Sec. IV. that the equilibrium properties are the results of a competi-
tion between two terms; the rotational enetgy/2l and the
II. MICROCANONICAL PROPERTIES potential energyp. The former tries to drive the particles
away from the center of mass in order to increbsenereas
A. Microcanonical definitions the latter tries to group the particles together in order to

Consider a system dfl classical particles on a disk of decrease, but since the center of mass is fixed this will lead
radiusR whose interaction is described by a Plummer softt0 @ concentration of particles near the center and conse-

ened potential36,37] quently will decreasé.
The microcanonical temperatufieis defined by

Gmm;
Pij=— 2—12 () 1 dS [N—=5/2
s°+(g—q)) TI,BE£:< E > ©

wherem; and qiz{qi1 ,qiz} are the mass and position of par- _ _ _
ticle i, respectivelys is the softening length, an@ is the ~ Where(-) is the microcanonical average
gravitational constant. The fixed total eneffgyis described

by the Hamiltonian C O(r)
o =—f dr——EN"%2, 7
. (O)=i) o7 & @
H=2 S+ ¢(a), @ e et :
Toem The angular velocityw is defined as the negative of the

conjugate force ot timesT [39],
wherep,={p!,p?! is the linear momentum of particle ¢

=2i<j¢ij» qis a 2N-dimensional vector whose coordinates L,
are{q,, ... ,On} representing the spatial configuratianis 1S |_Er
an element of the spatial configuration spa¥e, ( o=——=—=—"- (8)
B JL -1
EVCCRZN. (E; 5
The entropySis given through the Boltzmann'’s principle
(the Boltzmann constant is set tg, 1 We also defineyB as the conjugate forc df?,
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9S 1 N=5/2 By using sgnk ;), one can somewhat extend or clarify the
vB= ? - < TR > , (9 classification of phase transitions for “Small” systems when
J r

the entropy is a function aM=1 variables.

(1) A single pure phase ik1(Xg) <0, i.e., if the entropy
w=-2LYy. (100 surface is locally concave . For M =1 this corresponds
to apositiveheat capacity.

(2) A first order phase transition ik;(Xg)>0. For M
o o =1 this corresponds to megativeheat capacity. As men-

For finite-size systems or self-gravitating systems phas@oned in[34,43 the depth of the associated entropy intruder
transitions cannot be defined in the usual way, €.g., by means a measure of the interphase surface tension in the case of
of Lee and Yang singularitie33], since these singularities systems with short-range interactions. How to define and
show up only at the thermodynamical limit. Invoking the measure these depths whéri>1 will be discussed else-
thermodynamical limit when studying finite-size systemSyhere. Note that some eigenvalues might still be negative
washes out all the finite-size effects that may lead to newythougha,(X,)>0 just like in the model presented [iB4].
phenomenafe.g., isomerization of metallic clustefd0], | this case “good” order parameters are linear combinations
multifragmentation of nucle[41]) and for self-gravitating ¢ the eigenvectors whose eigenvalues are positive|4te
systems the thermodynamical limit does not exist. Hereatfter, (3) If X1(Xo)=0 and\; is the only zero eigenvalue, and

a syste_m will be considered as “Small” if the range of the V, \;,=0, wherev; is the eigenvector associated wikh,
forces is of the order of the system si@g., metallic clus- thén there is a second order phase transitioatFor M
ters, nuclei, and self-gravitating systenasid also if the sys- 1 this correspond t@2S/JE?=0 anda®S/JE3=0.

tem has no proper thermodynamical lirfétg., unstable sys- . N a
tems[42] and also self-gravitating systems (4) If several eigenvalues obey,=0 andV,\;=0 for

B. Phase and phase transitions

In a recent papel34] definitions of pure(single phases 1=1....h=<M thenX, is a multicritical point.
and phase transitiondirst and second kindbased on the
local topology of the microcanonical entropy surface have C. Momentum average and dispersion

been proposed. In the following we first fix some notations In this section we derive the average and the dispersion of

ancéthendreiill t&%de;ﬂmtlpnf.t d phvsical svst It the linear momentum of a particle, we also compute its mean
ciate?jn;t?c:p )SGEX) isoa gjnnft%i gf /\/l? )éi't(;issigg,,edrcr']a;i‘"flssoéngular velocity and relate it to that of the system as defined
Pt M in Eq. (8).
cal conserved quantitie§={X", .. . X™}. Note thatX may The derivation of(p,), , the average momentum of par-
not containall the dynamical conserved quantities and for . i . Pl : 9 . P
simplicity all these parameters are considered as being cofic€ k at fixed positiorg (while the other particles are free
tinuous. The Hessian matrix o§(X=X,) is noted by IS similar to that ofW. Details of the derivation can be found
HS(XO)=||ﬂZS/(9Xi(9Xj||xO, its eigenvalues arfhy,- - - A o), N the Appendix and the result is

whereh;=\,= .. .=\, and the determinant dfig(X) is 2 .

Ds=N1, .. Ay (P g =L ™1 g My Y €aslils, (13
In [34] phase transitions are definedby the points and @,0=1

regions of non-negative curvature of the entropy surface R

[---] as a function of the mechanical quantitieSherein  wheree is the antisymmetric tensor of rank 2 angis the

the sign ofDg is put forward as a measure of the concavity unit vector of coordinater. Equation(13) shows thal(pk>qk

of S(its negative curvatupeso that at first order phase tran- is a vector perpendicular ) whose module is a function of

sition lladl. In other words the orbit of a particle is, on an average,
B M+l circular (this result is expected since the system is rotation-
sgr(Ds)=sgr(—1) I (1D ally symmetrig. One can computewy),, , the mean angular
Though this condition imecessanyt is not sufficientin the ~ Velocity ofk at distancejq|, by first consideringL ), the
general case. In fa&is a nonconcave function &, if mean angular momentum &fat distance]qy|,
\1(X0)=0, (12) (L) =X (Pdq =L g ks (14)

i.e., if at least one eigenvalue &fg is non-negative. Note wherelkzmkqﬁ. The angular mean velocity of a particle on

that in the two-dimensional sample model studied3d] in  a circular orbit is classically linked toL 1) g Y

order to illustrate the definitioill), A, is always negative

and therefore the sign @g is simply the opposite of that of (La=(odq k- (15)

A1, and the condition$11) and(12) are equivalent. K k
Note that if M=1 then\,=3?S/dE2x—C_*, where

C;lz JT(E)/9E is the microcanonical heat capacity.

Hence, forM=1, A\, and the heat capacity are of opposite _
sign. : P I O oPP (g, =L(1 g, (16

We can identify{wy),, in Eq. (14) as
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The dependence dfw), on [|g| is of the order of IN One usually estimates E€R0) by means of some Monte
[<|_1>qk:<|_1>+O(N_l)]' therefore for largeN we can Carlo algo_rithm, updating the positiores by some small _
write [see Eq(8)] amount&_q in o_rder to get a good pass ac_cept_ance, and using
the configuration weightV(r)=(1/\1)eN 52 in the Me-
(0)q~L{I™ Y ~(w). (17)  tropolis pass. Unfortunately this strategy does not really
K work (within a reasonable CPU time because the

For largeN the mean angular velocity is the same for all theZN—dlmensmnal configuration weight landscape at fixed

particles at any distance from the center; in other words, thémdQ presents troughs and high peaks). Hence, explor-

system, on an average, rotates like a solid body. Moreoveld the tof[al configuration spager at least a sub;et contain-
ing the highest peakswvould take a very long, in practice

<wk>qk_ corresponds to the thermostatistical gngular Veloc'tyinfinite, time. This weight landscape looks like the energy
o defined by Eq.(8). These are also classical results forlandscape found in spin-glass systems.
extensive systems at low[39,45. Note also that these re-  The strategy we have adopted is described in the follow-
sults do not depend on the interaction potengial ing. First we can rewrite Eq20) as

The momentum dispersicmpk can also be derived. Using

Egs.(13) and (A5), we get for largeN 1 ep
W(e,m=fdld¢D<l,¢)—erN o, (21)
VI
02 =(B)a— (P~ 2 + 1 LZm (173 (12),
P PG % 7B where D(I,¢) =/, dro(1’(r)—1)8(¢'(r) = ¢). D(I,¢) is
18 the density of spatial configurations at giveand ¢. Given
D we can comput&V, S and its derivatives foany e and(},

The second term of Eq18) is intensive and proportional to eg.

the square of the dispersion of* and toq? (I,=mya?).

When this term vanishes relative to the first one, e.g., when _32 N-72

the fluctuations of ~* are small, or at high energjow ) 1S N-52 j dideD(I, )1 e

and lowL, we recover the usual dispersion of the Maxwell- V=S Ta = .
Boltzmann distribution. This term also gives a correction to p o P W(e. ) 22)

the usual equipartition theorem; for lare
The expectation valué®) of an observablé&(r) can be

2 . .
o, L2 B estimated if we knowD and(0), ,,
(E)=5o~T+—5(17)=(1"H), (19
k
f drO(r)l 12N =502
where (Ey) is the average internal kinetic ener@without (O)= ve

the contribution from the collective, hydrodynamical, rota-
tional movement of particle k. Again this correction is

J' drl 71/26:\%5/2
v
position-dependent vif, . In regimes where the fluctuations ¢

of the mass distribution cannot be neglected in E§8). and _
(19), an estimation of the temperaturg based or%itlh):a velocity J did¢(0),, 4D(1,4)l UZEP o
dispersion would show that the temperature is smaller at the = W(e, Q) ' (23
center than at the edge.
where
D. Numerical method
From now on we setm=mV i=1,...N and f dro(r)s(1'=1)o(¢" — ¢)
use the following dimensionless variablds; E—e=ER/ (O)) 4= fe (24)

Gm?N?; (i) L—12=0=L%2Gm’RN?; (iii)) s—o=s/R; D(l,¢)
(iv) q—r=q/R; (v) V¢—ve; Vi) e—¢d=(R/

GmZNZ)go:(—l/NZ)EKjl/\/?T—rJ—)Z); Wii) -1 Now,_we_have to comput®(l,¢) and(O), ,. A priori
:Eiriz- The weight(5) is now D(l,¢) is highly peaked around the values lodnd ¢ that

describe the ga@isorderegl phase and should drop down at
1 the edges. Nevertheless in order to study the total parametric
W(E,Q):C’f dr —e{\"5’2, (20) space €,l) a good estimate dD(l,¢) is needed for almost
ve Al all values taken byl(¢) even whenD(l,¢) is very small
compared to its maximum. For example, at small total en-
where e,=e—Q/1— ¢ is the dimensionless remaining en- ergy e only the part ofD(I,¢) for which e,=e—1%/1— ¢
ergy andC’ is a constant. Later on we no longer write this >0 will contribute to the integraf21).

constant since it plays no significant rdi¢ only shifts the In order to get a good estimate Dfwe used an iterative
entropy by InC"). The derivatives of entropyd, o, ...) scheme inspired by multicanonical algorithids—50. The
are now dimensionless. standard multicanonical task is to compute the free energy as
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FIG. 2. Entropy surface(e,Q0=17) (up to an arbitrary addi-
R i tional constant the mesh lines are at constantdr constant). The
thick line is close to the projection of the=0 (S— —«) isotherm.
06 0 A convex intruder at constarf2 and for a certain energy range
) (e.g.,—2=<e=<0 for 0 =20) can be seen for afb. Sis not defined
¢ in the forbidden region there the remaining energy is negative

for all qev,.
FIG. 1. Estimate of the density of stai,(l=3,4) () and

histogram of the visited staté3;(1 =3,¢) (b) at different iteration ith | N within th lqorithm. b
stepsi of the multicanonical algorithm as a function of the potential systems with largeN within the current algorithm, but we

energys and at fixed. Panel(@ shows howD is built step by step: should add that no qualitative charjggs have bfeen noted be-
D is an extremely peaked function, the logarithm of the ratio be-We€enN=10 andN=20 (some preliminary studies support
tween its maximum and its minimum is about 120. Without the this remark fofN=>50). Work is in progress to overcome this
blocking mechanisnisee text C; would have been non-null for all limitation, though we are convinced that qualitatively the
values of¢ visited during previous stefs<i. In panel(b) we see  results presented in the following apply to systems with a
that the algorithm does no longer visit “well-known” regiong ( larger number of particles.

= —1.5) already after four steps.

a function of the total energy. Here we have to comias . RESULTS
a function ofl and¢. The updating scheme presented50]

was used; one of the reasons for this choice is that although
it has been given for a one-dimensional task it can be trivi- Figure 2 shows the entropy surfageas a function ofe

ally extended to bivariate problems. Furthermore, we addednd Q =12, the square of the unitless angular momenium

a blocking mechanism: once we estimate that enough inforfhe ground-state energy,({2) (thick line in Fig. 2 in-
mation has been collected on a given region of the parametreases witlf); €4 classically corresponds 9 =0 implying

ric space [,¢) then it is tagged as “locked” so that it will S=—c. For all (), €4({2) is a concave function of), i.e.,

not be visited during the following iterations. This mecha—ﬁzeg/aﬂzso; at high Q (Q=12) it is almost linear
nism enables the program to spread more quickly over thézeg/&92—>0_. These properties show that the $et(}}
parametric space and save computation time comparing tover whichSis defined isnot convex[51], and in Sec. Ill D
usual multicanonical algorithms. Details on this blockingwe discuss some consequences resulting from a nonconvex
mechanism are given elsewherat]|. domain of definition.

In the present paper we present resultsNet 20 ando At fixed Q, S(e) is not concave for alk but shows for
=0.05. Figure 1 shows a slice &f(l,¢) for | =3 at differ- =~ some energy interval a convex intruder, which signals a first
ent iteration steps [Fig. 1(a)]. We have also plotted the order phase transition with negative specific heat capacity
histogramC(l =3,¢) of the visited region in order to illus- (dB/de>0) [35]. This can be better viewed by plotting
trate the blocking mechanisffrig. 1(b)]. As expectedD is  B(€,Q2)=dS/de (Fig. J). Here the counter part of the en-
strongly peaked around the disordered regifs —1 (this  tropy intruder is a region of multiple valued g), this is the
value corresponds to the meandver randomly generated case forg between 15 and 20.
spatial configurations After ten iterations the ratio between  The latent heat at fixed), q.({}) decreases for €()
the maximum and the minimum d is ~exp(120). This =12 and is a constant fd2>12. There is no critical value
ratio increases exponentially with, e.g., atN=10 its value of ), Q. above whichS(¢€) is concave for alk, i.e., there is
is ~exp(80). This is the main reason why we could not studya first order phase transition of all values @f In another

A. Entropy and its derivatives
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FIG. 3. Inverse temperatur@(e,Q2=1%) surface. The mesh FIG. 5. Densityp as a function of the distance from the center
lines are at constard or constant(). The intruder inS at fixed () at different values of energy and angular velocity) (arbitrary
corresponds here to a multiple energy value for a gigeand(),  units). At high energy and for alf) the density is flat; the system is

e.9., B(&,{2=0)=20 has three solutions;~0, e,~—1, ande;  in the homogeneous gas phase. Near the ground state the density

~—6. The thick line is close to the projection of the=o iso- shows one peak fal =0 (a) and two peaks fof£2>0 (b), which

therm; 8 is not defined in thdorbiddenregion. correspond, respectively, to a one-cluster and to a two-cluster phase
surrounded by some gdsee text

model for a self-gravitating system such(k was report- almost a constant. All these structures can be understood in

ed [26]: . . terms of mass distributions, which influeneehroughl (see
In Fig. 4 we have plotted the microcanonical angular Ve-goe Il B

locity w as a function of) ande. As a direct consequence of
Eq. (8) w tends to zero with(}, and at high energy is
proportional to\Q (x1). For low energies an<12, w
exhibits some structures with peaks and troughs, in other In order to understand the origin of the structures seen in
words at fixede, o is not necessarily an increasing function the different microcanonical quantitie$,(8, », ...) we
of Q. At high Q (2>12) and near the ground statesis  have to have a closer look at the spatial configurations, i.e.,
at the mass distributions. One observable we have studied is
the mass density [see Eqs(23) and (24)]. As the Hamil-
tonian of the system is rotationally invariant, the mean value
of p can only be a function af, the distance from the center
of coordinates, although other observables, e.g., two-body
correlations might show a breaking of the rotational symme-
try (see below.

On Fig. 5p is plotted for different energies and f&}
=0 andQ=4. ForQ =0 [Fig. 5a)] we recover the classical
case(whenE is the only fixed parametgrAt high energy the
system is in a homogeneous gas phéts p); when the
energy decreases the system undergoes a phase transition and
eventually ends up in a collapse phase where a majority of
particles are in a cluster near the center of coordinages (
peaked atr =0). For Q#0 [Fig. 5b)] the situation is very
different. At high energy we recover the homogeneous gas
phase. But at low energy the system cannot collapse entirely

FIG. 4. Microcanonical angular velocity(e,=12) surface. ~ at the center of mass. This is due to the rotational energy
The mesh lines are at constanbr constant). o is not defined in  €,¢={/1 in Eq.(5). If the system contracts at the center, the
theforbiddenregion. At high energy»o \/Q; near the ground states inertial momentuml will tend to zero and, therefore,
o shows a richer nonmonotonic behavior with peaks and troughavill diverge leading to a negative remaining energy. So
for small Q) and has a nearly constant value for lafygsee texx depending on the value dd the main cluster will eject a

B. Mass distribution
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! tions. See text.
M- N
o
Hi T
it YT
i v
A . ! L
1070 0.5 1 L5 2

certain amount of particles in order to incredséNear the  one-cluster system. At least two-clusters lying on a circle of
ground state these “free” particles will eventually collapse toradiusr, are needed. All these-cluster systems have the
form a second cluster in order to decrease the potential ersame rotational enerd/I = Q/Nr3, but their corresponding
ergy ¢. Due to the conservation of the center of mass, thepotential energyp,, will differ. For example, witha=0.05,
position of the biggest cluster will be shifted from the centerf o=0.5, andN=24 the ratio of potential energy i$,/¢3

by a certain amourfisee Fig. %) ate=—5]. At low Q one  =1.7. So at low energy, the remaining eneegycorrespond-
particle will be ejected, with increasin@ the number of iNg to a two-cluster system will be much larger than the
ejected particles raises and this process stops when twiBree-cluster one, leading tormigedifference in the weight
equal-size clusters are formed. This explains the discretene¥¥(")- SO at low energy and fdi #0 the two-cluster case is

; ; ; dominant. At higher energies, the ted(l,¢) in Eq. (21)
fth k Fig. 4 and th f th d stat . . :
of the peaks inv (Fig. 4 and the increase of the ground sta ecan compensate for the difference in the weig¥ir) and

energy.eg(Q)., because the potential energy of a single CIUS_allow many-cluster configurations and eventually at high en-
ter of sizeN is smaller than that of two well separated clus- X : ) X
ters. At high @=12) the system undergoes a phase transi€"9Y: & complete random conflgurathn on the ring of radius
tion.from a gas phase to a collapse phase with two equal-sizreQ will dominate the average mass distribution.

We can check this argument by studying another observ-
clusters close to the boundary. From one valuedef{); g6 for example, the normalized distance distribub),
>12 to another ond,>(),, the whole entropy curve at je ' the density of probability that the distance between two
flxgd gngular momentum is simply shifted along the energdyyiven particles isl. To probe the information given biy(d)
axis, i.e.,S(€,Q1) ~S(e+[Q,—0;]/N,Q5). So the ground e have estimated it for four simple mass distributiofas:
state energyy(2) at highQ) is almost on the line of equa- two-clustersb) three-clusters(c) a ring, (d) a uniform ran-
tion €5+ Q/N+ ¢p4~0, whereQ)/N and ¢, are the rotational dom distribution. For(a), (b), and(c) the particles were put
energy and the potential energy of two clusters of 8l#2at  on a circle of radius ,=0.5, and then randomly shifted sev-
radiusr =1, respectively. This monotonic behavior has al-eral times(in order to give a spatial extension to these ide-
ready been mentioned for all the thermodynamical variableglized initial configurations finally theN(N— 1)/2 distances
S (Fig. 2), B (Fig. 3), w (Fig. 4), etc. are recorded for all realizations and averaged. Figure 6

As already mentioneg is only a function ofr and it  shows the average &(d) over 1000 realizations. Note that
cannot be used to infer the angular distribution of the parthe density distributiorp(r) is by construction exactly the
ticles, i.e., there is not enough information to say if a peak insame for the first three cases, i.e., strongly peakeg aith
p atry#0 corresponds to one or many-cluster or to a uni-a width of about 0.5. The latter value depends on the shift
form distribution of the particlegring) lying on a circle of  one applies on the initial idealized spatial configurations.
radiusr,. However at least at very low-energy a many clus-  As one can see in Fig. 6, although the density distribution
ter (more than two configuration is very unlikely and will  is the same fofa), (b), and(c), P(d) gives some new insight
not contribute to the average values for reasons linked to then the mass distribution.
weight W(r)= (1/\1) e,N‘5/2. For simplicity let us assume (a) There are two peaks, one centered at sallvhich
that there is only one strong peakgratr=ry#0. Since the corresponds to a clusterization, and another one=al
center of mass is fixed this cannot be the signature of & 2r; this is exactly the distance between the two clusters
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FIG. 7. Distance distributiorP(d) for the
gravitational case for different values oé,(}).
At high energyP(d) corresponds to a random
distribution (see Fig. 6 For Q=0 and at low
energy, P(d) has one peak al=0; almost all
particles are very close to each other and there is
a single-cluster collapse phase. For£ 0 there
are two peaks at low energy: one at very sndall
which is a sign of clusterization, and another
peak at largel, which signals multiple clusteriza-
tion; in fact there are two clustefsee texk

S
LIS L . e

N

(more precisely between their center of ma3$e area un- The distance distribution can be of great help to identify

der the smaltl peak is similar to that under the largepeak. the mass distributions at low energies. However in the tran-

Indeed the number of short distance pairs and the number aition region since there is a superposition of different types

pairs withd=1 are both aboul?/4. Moreover the widths of of mass distributions, the knowledgeand P(d) is not suf-

the first and second peaks d@es expected~0.5 and~1  ficient and, therefore, of no help if we want to study, for

=2X0.5 respectively. example, the “fractality” of the mass distribution as has been
(b) There are again two peaks, one at sndadind another

discussed in other self-gravitating systerf&2—54 (not
atd=0.8<1, and their respective widths are similar to thosementioning the fact that the actual number of particles in the

in (a). The larged is compatible with the length of one side presented numerical applications is too spaind further

of the equilateral triangle on top of which the three-clusterwork is needed to get a more detailed picture.

mass distributions were built. This time the area under the At very low energy, near the ground state at least one of
larged peak is larger than that under the shibpeak, since  the clusters(the smallest is very close to the boundary.

the number of short distance pairs is abbidt6 whereas the There the assumption of a small evaporation rate made in
number of pairs wittd=0.8 isN?/3. Sec. | does not hold.

(c) For the ring case a trace of the two peaks still exists
b_ut they are not well gepargted pecause a lot of intermediate C. Phase diagram
distances are compatible with this model.

(d) When the particles are uniformly distribut&{d) has In Fig. 8 we have plotted sfn,(e,1) ] as defined in Sec.
a binomial-like shape. Il B. This plot can be taken as the phase diagram of the
We have also estimateR{d) for our gravitational system, self-gravitating system at fixed andl. The white regions

as shown in Fig 7. At high energi2(d) corresponds to the correspond to pure phases;<0). At high energy there is a
randomly distributed casesee Fig. 6. At low energy with homogeneous gas phase and at low energy there are several
Q0 =0, P(d) has only one peak al=0, this corresponds pure collapse phases with on@ €0) or two ((2#0) clus-
clearly to a single-cluster case surrounded by some gas. Fters. The different two-cluster phases are characterized by the

QO +#0 and at low energyin Fig. 7,e=—5 and()=4), there relative size of their clustersee Sec. Ill B. These regions
are two well separated peaks, one at snig=0 and the are separated by a first order phase transition region where
other atd;=1.1. The peaks imply the presence of at least\;>0 (gray in Fig. 8. There is even a regiofdark gray

two clusters, however the fact that the widths of the peaksvhere the entropgis a convex function ot andl; i.e., all

are small excludes a large number of clusters and even motbe eigenvalues dfi5 are positive ;>0 andDg>0). This

so the ring casdsee Fig. & Now we can combine these region is quite stable with respect to the number of particles
informations with those obtained frop(r) (see Fig. 5. For  (at least forN<100). Its specific surface increases slightly
e=—5 andQ =4, p has two peaks at;=0.15 andr,=1.  with the number of particlefN. The orientation ofv,, the

All'in all, this means that there are, on an average, mean, tweigenvector associated with, is not yet known in detail for
clusters rotating around the center of mass. The distance ball (e,l). However, we can already state that at high energy
tween these clusters ig+r,=d;=1.15. Due to the fixed v, is almost parallel to the energy axes and should be parallel
center of mass their mass ratio m,/m;=r,/r,=0.15. to the ground state at very low energy. The overall structure
Since we know the total mass; + m,=20 we getm;=17  of the collapse phases matches that of the angular velacity

andm,=3. (see Fig. 4. Roughly, the peaks im correspond to pure
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phase transitions are located at the crossing points of the
thick lines and the borders. One immediately sees that there
are several critical points. However there are not all of
(astroj physical interest since most of them are close to the
ground state line or at very high angular momentum where
the small evaporation rate assumption is not valid. Neverthe-
less there are two points, one atQ)~(—0.5,1) and an-
other one at €,Q2)~(—0,4), where this assumption is valid
and, therefore, they deserve further investigations, especially
regarding their corresponding mass distributions.

15

¢ 10

D. Loss of information in canonical ensembles

Once one defines the generalized microcanonical en-
FIG. 8. Sign of the largest eigenvalug of Hs, the Hessian S€MbIE(ME), it is straightforward to introduce and study the
matrix of S, as defined in Sec. Il B. The white regions correspond toSyStem in its conjugate ensemble, the generalized canonical

\,<0. These are pure phase regions. The gray region correspon@9semble(CE). Note that “generalized” means in CE “as a
to A,;>0 and\,<0 and the dark gray ones alsoxe>0 but with  function of all the intensive variables” and, in ME “as a
\,>0. \, is the second eigenvalue Hifs. A;>0 defines first order ~ function of all extensive parameters.” There are mainly two
phase transition regiongee text Points inG (the region filled  reasons for studying a system in CE instead of in ME
with dashed lines correspond tolocal maxima (minima) of (1) Performing the computations in CE is in most cases
f(X,Xg) = — XX+ S(X) if N1(X0)<0 [N1(Xg)>0], see Eq(25.  much easier than in ME. Here CE can be seen as a[isk
Points outsideG correspond to theglobal maxima of f(X,Xo). However there isa priori no reason for the results to be
There is a one-to-one mapping between the microcanonical and thequivalent. Indeed the strict equivalence of the ensemble is
canonical ensembles only outside Beregion(see text Sis not  only achieved at the thermodynamical limit except in the first
defined in thdorbiddenregion, here in |Ight gray. Note th@) the order phase transition regiof@.s,34'43_ In a weaker sense,
point_s atQ=0 an_d I_ow eqergies<—7 are not i_ncluded is, (b) needed for “Small” systems, ME and CE can only be
the high energy limit ofG is known only approximately. equivalent when ;(X)<0 and far from any first order phase
transition regiongsee beloyw. Moreover recent progress in
phases while the valleys between these peaks belong to themputer performance now enables one to perform numeri-

first order phase transition region. cal experiments within the ME for increasingly complex sys-
As already mentioned, unlike in the model presented byems.
Laliena in[26], there is no critical angular momentuin (2) The studied system is not isolated but is in contact

above which the first order phase transition vanishes givingyith a “heat bath” and can exchange amountsXoWwith it.

rise to a second order phase transitiorLat Nevertheless Then, obviously ME does not provide a suitable description,
this does not exclude second order phase transftidtical gnd CE might be eligible. Here CE describeddifferent
poiny at all. They are defined in the microcanonical en-physical system than that in ME. At the thermodynamical
semble by(i) A;=0, (i) VA;-v,=0 (see Sec Il B In Fig. 9 |imit (if it exists) the ensembles are again equivalent except
(just like in Fig. 8 regions wherev;<0(>0) are in white  at first order phase transitions. However, the CE description
(gray). The condition(i) is simply achieved at the border s valid only if the Hamiltonian of interactiort{;,, is small
between the gray and the white regidns is a continuous  compared to those of the systefiis,s, and the heat bath,
function over the whole parametric spacgl}]. The thick 7, . This condition is usually fulfilled at the thermodynami-
lines on Fig. 9 correspond to conditidi). Second order cal limit (if it exists), but for “Small” systems the Hamil-
tonian of interactionH;,;, can hardly be small at least com-
pared toHsysand this can lead to dramatic effe¢t6,57. In

this case a better description would be the ME of the system,
its heat bath, and their interactions.

For now on we consider in this paper the cases when CE
is used as a mathematical trick, and we focus on the amount
of information lost from ME to CE.

The link between ME and CE is given by the Laplace
transform(using the notations introduced in Sec. )l B

20

15

Z(X)= f:dXe—X”S(X), (25)

whereZ is the partition sum of the CE={x?, ... x™} are
FIG. 9. Locus of second order phase transititsese text the intensive variables associated wittand defined by
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T T
XA X Xc *p X

FIG. 10. Schematic entropy cun&as a function of one exten-
sive parameteX (solid line) and the Maxwell lingdashed ling A
andD are the end points of the Maxwell construction.B\andC FIG. 11. f(&,Q,B0.70)=—€Bo—QBoyo+S(e,Q)—K as a
the largest curvature vanishes, i2;=0. All the points below the  function of € and €, where K is an arbitrary constantg,
Maxwell line do not correspond to a global maximum in the =g(ey,00), Qo=0(€9.00), Xo=(€0,20)=(—3,5)=(Q0.70)

Laplace transform, Eq(25. This includes points where\;  ~(27.9-0.196). The mesh lines are at constarar constant().
=9S/9X?>0, but also points where the entropy is concave, forag expected has a saddle point &y~ (q,7,) Sincem(Xy)>0
Xe[Xa,Xg] andX e [Xa,Xg], N1(X)<O0. and D(X,) <0 (see text and Fig.)8f has a global maximum at
=0 ande~ —7, but one sees that it is a monotonically increasing
. 4S function for increasing) and e(£2) ~ €4({2) + 2. Therefore the in-
X'= - (26) tegral in Eq.(25) divergesand the (3, yB) ensemble isot defined
X for (Bo.70)-
fori=1,... M. The ME atX, is equivalent to the CE at P(X,X)>S(X) (27)

Xo=X(X,) if the integrand in Eq(25), e"**0), and therefore
f(X,Xg) = — XX+ S(X) has aglobal maximumat X, [44].  for all X# Xy andp(Xq,Xq)=S(Xp) by definition.
This condition is violated whei ;(Xg)>0 (this is the basic In the case of the gravitational model presented hére
idea behind the definition of phase transitions in “small” ={e,Q}} and x={B,yB} (GBE). Now if one inspects the
systems, se€34]). So in practice all informations are con- entropy surfaceS(X) (see Fig. 2 it is clear that condition
tained in points whera ;>0 are lost after the Laplace trans- (27) is not satisfied for all the points in the region filled with
form (25) in CE. dashed linegG) in Fig. 8. This is due to the concavity of the
Now we are left with the pointsX, characterized by energy ground statey({2) (see Sec. lll A. G includes all
N1(Xp)<0. This relation implies only thaf(X,x,) has a the two-cluster collapsed phases and the first and second or-
local maximum atX, but not that it is aglobalone;\;<0 is  der phase transition@xcept foro=Q=~y=0). All the in-
a necessary but not sufficient condition. In Fig. 10 we havdormation contained i16 is smeared out through the Laplace
illustrated this point with a trivial one-dimensional example. transform(25) in GBE and is, in practice, lost.
All the points below the Maxwell line do not correspond to  The fact that GBE misses all the two-cluster collapse
global maxima and their information content is smeared ouphases would be already enough to disqualify it as being a
and, in practice, lost in CE. good approximationmathematical trick of the ME. But,
From the last remark we see that a way to check if a poinfurthermore, if one studies more carefullgX,xy), X, G;
corresponds to a global maximum in E@5) is to study one will notice that(a) there is one local maximum &
what would be a generalization of the Maxwell line vt =0 and(b) there is no maximum for higk): in the direction
>1 dimensions. Work is in progress in this direction and theof increasing() at low energy,f(X,Xq) is a never ending
results will be presented elsewhere, but we can already statecreasing function, i.ef,(X,Xg) hasno global maximunfor
that this task is, to some extent, similar to that of building theX,e G (see Fig. 11 Therefore the integral in Eq25) di-
convex hullof a set of points inM dimensions, or more vergesfor all x5, Xge G. In other words the GBE, in our
specifically the convex hull of the entrofg model, isnot definedor high 8 and y#0 (w#0).
However, if one needs qualitative results, in two dimen- One could argue that GBE is not the correct CE for this
sions the task can be rather easily solved in another way. Lalystem. l.e., one should rather fix the conjugateg ahdl,
us definep(X,Xy) as the tangent plane t8(X) at Xy; its  as the inverse temperatug@ and the angular velocity,
equation isp(X,Xg) = — XXg+ S(Xg) + XpXo- If T(X,Xg) has  respectively. By following the same path as for GBE one can
a global maximum akX, then show that contrary to GBE, the standard canonical ensemble
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is defined everywhere. However, one can also show that niy (at least one eigenvalue is positive, say, then there is a
point Xo=(€g,lp) in the region wheree<0 andI<5 (it first order phase transition in the direction\gf, the eigen-
includesG, see Fig. 8 corresponds to a global maximum of vector associated with;. A critical behavior occurs when
the function f(e,l,Bq,wo)=—€Bo— | Bowo+S(€,1). This  one(or many eigenvalue vanishes on at least a second order
implies that all the asymmetric pure phases are overlooketegion(if A;=0, V,, A;=0). Note that one can find positive,
by CE. In other words they do not correspond to globalnegative, and zero eigenvalues at the same point in the pa-
minima of the canonical free energy. This is also the case forameter space. Using these criteria, we can draw a phase
the two critical regions at relatively high energies. diagram of the gravitational systefRig. 8) at fixedE andL:
These examples show how dramatic can the informatiomt high energy there is a pure gas phase; at low energy there
loss be if one studies an isolated system as a function cire several pure collapse phases, there is one cluster at
intensive parameters. =0, and there are two clusters far#0, these phases are
separated by first order phase transition regions. There are
also several second order phase transitions, two of them are
located at relatively high energie€4{0) and, therefore,
A. Summary may be of astrophysical importance.
Studying an isolated system using the CE can be very
sleading, since there is a massive loss of information from

IV. SUMMARY AND DISCUSSION

The aim of this paper is to present the results of a study OFni
a Z?lf'géiv'tat”;]g Eystem of cla§S|caI p'aréllcles on a F'Sk Ofl the correct ME description to that of the GE there are
radius R for which two extensive variables, namely, total g6 transitions in MEIn fact for the gravitational model,
energyE and total angular momentuinare fixed. The mi- ¢ cannot be sensitive to the asymmetric two-cluster phases
crocanonical entrop$ can be written as the logarithm of an 54 all the phase transitiongnd they-8 ensemble GBE)

integral over the spatial configuratiof®) and(S). The con- a5 defined in Sec. Il Ds not defined for some values of the
servation ofL implies that the mean value of the linear mo- jntensive parameters that exist in ME

mentump of a particle at a radial distaneeés proportional to
L andr, Eq. (13); on an average the system rotates like a B. Discussion
solid body, i.e., the mean angular velocity of a particle does

not depend on its positiof17). The dispersion ofp is
broader than what it would be If is not be conserved an
depends on the radial positidh8). In order to integrate®
we write it as the folding product of a “background” func-

Of course we have just presented eguilibrium statisti-
d cal model that may help to understand the physics of globu-
lar clusters or collapsing molecular clouds, but the results
should be interpreted with caution especially in the case of

tion D and th iaht iated with th -~ star formation. A lot of “ingredients” are missing in order to
lon L and the weight associated wi € remaining energy, e a complete picture of the formation of multiple stars

(21). Once a numerical estimate Bfis obtainedSand its g s1ems and planetary systems, for instance, the magnetic
derivatives, such as the inverse tempelra]zBlrean' be com-  igg [58,59 or the presence of vorticd§0.

puted. The entropy surface shows an intruder in the energy phases and phase transitions can be well defined in the
direction, which signals a first order phase transition with\E without invoking the thermodynamical limit by probing
negative specific heat capacitffigs. 2 and ® Contrary to  the curvature of the entropy surface. There still exist open
another mode([26] there is no critical value ol above  problems. One of them is the scaling of a first order transi-
which this transition is no longer present. At high energy thetion: in Fig. 10, in a canonical sense the phase transition
angular velocityw is a simple increasing function &f [Eq.  occurs fromX, to Xp (if X is the energyE thenXp— X, is

(8) and Fig. 4, but at low energy, near the ground states, thethe transition latent heptbut if one uses the ME definition
relation betweer. and  becomes nontrivial. All these pe- the transition occurs only froriXgz to X . At the thermody-
culiarities can be understood if we study the mass distribunamical limit, if it exists, such discrepancy should disappear.
tion. We use two observables: the density of massas a  In another contexta model of a first order liquid gas transi-
function of the radial distance arfél(d), the density prob- tion of finite-size sodium clustersve could show thatXc
ability that the distance between two particlesligt fixed L.~ —Xg)/(Xp—Xa)—1 when the system size goes to infinity
and at high energy the particles are randomly distributed44]: L . )

over the disk(gas phase If the energy decreases, below _ The ME definition of phase transitions offers a richer
some threshold the system undergoes a phase transition YEW Of physical systems and phase transitions. Again in Fig.
first order to a collapse phase.Uf=0 there is a single clus- 10, CE is not sensitive to everything that could happen under

ter at the center of mass, lif+0 then there are two clusters e Maxwell line: there is always one transition. On the con-
rotating around the center of mass. Their relative mastrary, in ME there could b? many -phase transitions between
my /m, with m,>m, is very large for IoWL it decreases as §(A andXp . For example, if there is a small positive curva-
1 2 1 2 ’ 3
L raises and eventually becomes 1 folarger than a certain ture pump be.tween(B and X there wogld be two transk-
tions in the microcanonical sense but still one in the canoni-
threshold. Clearly these two clusters phases were not rex sense.
ported in previous work because of the usaapriori as-
sumption of rotational symmetry.
Phase transitionand phasescan be defined unambigu-
ously in the microcanonical ensemble as a function of the We are grateful to V. Laliena, D. Valls-Gabaud, and
local topology of S If all eigenvalues ofHg, the Hessian P.-H. Chavanis for useful comments and criticisms. We also
matrix of S are negative then the system is in a pure phasehank E. Votyakov for discussions and technical help.
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APPENDIX

Let us compute(pk>qk the average momentum of partidkeat fixed position(for simplicity we will setk=1). The a
component of(pl)ql is

j(l_.[ dpif[2 dqi)pfé(E—H)é(z)(Z pi)ﬁ(Ei qixpi—L)ﬁ(z’(zi qi> f(.HNz dqi)Pfﬁ(z)(Z qi)

f(ﬂ il da |- 00%( 3 n oS axp-L|s? 3 q) J(IEIZ olqi)W<r>5<2>(2i a|

| (A1)

<pi'>ql:

whereP{= [(I;,dp;) p7 6(E—H) 82(2ip) 8(2iq X p—L), andW(r) is the microcanonical weight at a fixed spatial configu-
rationr, its value isW(E,L,r)=C(1/\1)EN"5?[see Eq(5)]. The outline of the derivation dP¢ is the same as if26] for W,
and we get after some algebra

2
Pi=CLmyl *3’2;:‘,1 T = (A2)

wheree is the antisymmetric tensor of rank 2. Using E42) in Eq. (A1) we get finally

2

N
f (IL dqi)CLmll *3’2521 qfegaEr“S’zé(”( Ei qi)

(P1)g,= N 7 =Lmy(l _1>q125 U5€ s - (A3)
J (H dqi)l‘l’ZE fosaEP_S/%(z)(z %)
i=2 5=1 i
Finally,
<p1>q1: Lm1<| _1>q1% qfe&véa ’ (A4)
wheree, is the @ component’s unit vector.
(p@qk can be derived in a similar way and we get
T ( - ﬂ) - ey iem) (A5)
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