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Effect of angular momentum on equilibrium properties of a self-gravitating system
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~Received 4 February 2001; published 11 April 2002!

The microcanonical properties of a two-dimensional system ofN classical particles interacting via a
smoothed Newtonian potential, as a function of the total energyE and the total angular momentumL, are
discussed. The two first moments of the distribution of the linear momentum of a given particle at a fixed
position show that~a! on average the system rotates like a solid body and~b! the velocity dispersion is a
function of the distance from the center. In order to estimate suitable observables, a numerical method based on
an importance sampling algorithm is presented. The entropy surfaceSshows a negative specific heat capacity
region at fixedL for all L. Observables probing the average mass distribution are used to understand the link
between thermostatistical properties and the spatial distribution of particles. In order to define a phase in a
nonextensive system, we introduce a more general observable than that proposed by Gross and Votyakov@Eur.
Phys. J. B15, 115 ~2000!#. This observable is the sign of the largest eigenvalue of the Hessian matrix of the
entropy surface. If it is negative then the system is in a pure~single! phase; if it is positive then the system
undergoes a first order phase transition. At largeE the gravitational system is in a homogeneous gas phase. At
low E there are several collapse phases. AtL50 there is a single-cluster phase and forLÞ0 there are several
phases with two clusters. The relative size of the clusters depends onL. All these pure phases are separated by
a first order phase transition region. Signals of critical behavior emerge at several points of the parameter space
(E,L). We also show that a huge loss of information appears if we treat the system as a function of the
intensive parameters. Besides the known nonequivalence at first order phase transitions, the pure phases with
two clusters of different sizes are not accessible to the canonical ensemble. Moreover, for a particular choice
of intensive parameters introduced in this paper, there exist in the microcanonical ensemble some values of
those intensive parameters for which the corresponding canonical ensembledoes not exist, i.e., the partition
sumdiverges.

DOI: 10.1103/PhysRevE.65.046143 PACS number~s!: 05.70.Fh, 05.20.Gg, 05.10.Ln
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I. INTRODUCTION

The thermostatistical properties of systems ofN classical
particles under a long-range attractive potential have b
extensively studied since the seminal work of Anton
@1–7#. One of their more specific and interesting propertie
that they are unstable for allN @2# and, therefore, not ther
modynamically extensive, i.e., they exhibit negative spec
heat capacity regions even when the system is compose
a very large number of particles.

It is quite natural to ask whether the total angular mom
tum L, which is an integral of motion for systems of re
evance in astrophysical context, plays a nontrivial role on
equilibrium properties of these systems. IndeedL is consid-
ered as an important parameter in order to understand
physics of systems such as galaxies@8–10#, globular clusters
@11–14#, molecular clouds in the multifragmentation regim
@15,16#, which might eventually lead to stellar formatio
@17–22,25#.

Previous works have already studied the effect ofL in the
mean field limit with a simplified potential and by imposin
a spherical symmetry@26#, or at L50 @13#. Our work, pre-
sented in this paper, is an attempt to overcome some of t
approximations.

Thermodynamical equilibrium does not exist for Newto
ian self-gravitating systems, due both to evaporation of s
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~the systems are not self-bounded! and short distance singu
larities in the interaction potential. However there exist int
mediate stages where these two effects might be negle
and a quasiequilibrium state might be reached~dynamical
issues like ergodicity, mixing, or ‘‘approach to equilibrium
@7,27,28# are not considered in this paper!. In order to make
the existence of equilibrium configurations possible we ha
first, to bound the system in an artificial box and, second
add a short distance cutoff to the potential. The latter po
can be seen as an attempt to take into account the appea
of new physics at very short distances~about the influence of
this short distance cutoff see@29–31#!. Another way to avoid
the difficulties due to the short distance singularity is to d
scribe the function of distribution of the ‘‘stars’’ within
Fermi-Dirac statistics@3,32#.

The box breaks the translational symmetry of the syste
therefore the total linear momentumP and angular momen
tum with respect to the center of mass of the systemL are not
conserved. Nevertheless we assume that the equilibra
time is smaller than the characteristic time after which
box plays a significant role@13,26#. ThereforeP and L are
considered as~quasi-! conserved quantities. We put the ce
ter of the box at the center of massRCM , which is also set to
be the center of the coordinates. ThereforeP50.

As already mentioned, self-gravitating systems are non
tensive and a statistical description based on their inten
parameters~canonical ensemble! should be taken with cau
tion since the different statistical ensembles are only equ
lent at the thermodynamical limit far from first order trans
©2002 The American Physical Society43-1
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OLIVIER FLIEGANS AND D. H. E. GROSS PHYSICAL REVIEW E65 046143
tions ~see Sec. III D!. Moreover, this limit, which is not
defined for self-gravitating systems, is required in order
define phases and phase transitions if one fixes the inten
parameters@33#. In contrast, the microcanonical ensemb
~ME! does not require this limit and allows a classification
phase transitions for finite-size systems@34,35#. Hence the
considered system is studied within the natural ME fram
work.

In order to perform the computation in a reasonable ti
we have to consider a two-dimensional system.

The paper is organized as follows. In Sec. II we recall
analytical expressions for entropy and its derivatives~Sec.
II A !, generalize the definition of phase transitions for no
extensive systems proposed in@34# ~Sec. II B!, discuss the
two first moments of the distribution of the linear momentu
of a given particle at a fixed position~Sec. II C!, and present
a numerical method based on an importance sampling a
rithm in order to estimate suitable observables~Sec. II D!.
Numerical results are presented in Sec. III; the link betwe
the average mass distribution and the thermostatistical p
erties is made in Sec. III B. In Sec. III C we use the defi
tion of phase introduced in Sec. II B to draw the phase d
gram of the self-gravitating system as a function of its ene
E and angular momentumL. Finally, we introduce a non
standard canonical ensemble~GBE!. This ensemble is a
function of the~intensive! variables conjugate ofE andL2. It
is inspired from another nonstandard canonical ensemble
troduced in@23#, see@24#. We discuss the results obtaine
from GBE and also from the standard canonical ensem
For our model we show how the predictions using the
ensembles are inaccurate and misleading~Sec. III D!. Results
are summarized and discussed in Sec. IV.

II. MICROCANONICAL PROPERTIES

A. Microcanonical definitions

Consider a system ofN classical particles on a disk o
radiusR whose interaction is described by a Plummer so
ened potential@36,37#

w i j 52
Gmimj

As21~qi2qj !
2

, ~1!

wheremi andqi5$qi
1 ,qi

2% are the mass and position of pa
ticle i, respectively,s is the softening length, andG is the
gravitational constant. The fixed total energyE is described
by the Hamiltonian

H5(
i

pi
2

2mi
1w~q!, ~2!

wherepi5$pi
1 ,pi

2% is the linear momentum of particlei, w
5( i , jw i j , q is a 2N-dimensional vector whose coordinat
are $q1 , . . . ,qN% representing the spatial configuration.q is
an element of the spatial configuration spaceVc , q
PVc,R2N.

The entropyS is given through the Boltzmann’s principl
~the Boltzmann constant is set to 1!,
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S~E,L,N!5 ln@W~E,L,N!#, ~3!

where W(E,L,N) is the volume of the accessible pha
space withE, L, andN fixed ~under the assumptions given i
Sec. I!

W~E,L,N!5
1

N! E )
i 51

N S dpidqi

~2p\!2D d~E2H!d (2)S (
i

pi D
3dS L2(

i
qi3pi D d (2)S (

i
qi D , ~4!

where qi3pi5qi
1pi

22qi
2pi

1 . After integration over the mo-
menta, Eq.~4! becomes@26,38#

W~E,L,N!5CE
Vc

dq
1

AI
Er

N25/2, ~5!

where

C5

~2p!(N23/2))
i

mi

~2p\!2NN! S (
i

mi DG~N23/2!

is a constant,I 5( imiqi
2 is the inertial momentum, andEr

5E2L2/2I 2w is the remaining energy. From the point o
view of the remaining energy, ifLÞ0 we can already notice
that the equilibrium properties are the results of a comp
tion between two terms; the rotational energyL2/2I and the
potential energyw. The former tries to drive the particle
away from the center of mass in order to increaseI whereas
the latter tries to group the particles together in order
decreasew, but since the center of mass is fixed this will lea
to a concentration of particles near the center and con
quently will decreaseI.

The microcanonical temperatureT is defined by

1

T
5b[

]S

]E
5 K N25/2

Er
L , ~6!

where^•& is the microcanonical average

^O&5
C
WE

Vc
dr

O~r!

AI
Er

N25/2. ~7!

The angular velocityv is defined as the negative of th
conjugate force ofL timesT @39#,

v[2
1

b

]S

]L
5

K L

I
Er

21L
^Er

21&
. ~8!

We also definegb as the conjugate forc ofL2,
3-2
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gb[
]S

]L2
52 K 1

2I

N25/2

Er
L , ~9!

v522Lg. ~10!

B. Phase and phase transitions

For finite-size systems or self-gravitating systems ph
transitions cannot be defined in the usual way, e.g., by me
of Lee and Yang singularities@33#, since these singularitie
show up only at the thermodynamical limit. Invoking th
thermodynamical limit when studying finite-size system
washes out all the finite-size effects that may lead to n
phenomena,~e.g., isomerization of metallic clusters@40#,
multifragmentation of nuclei@41#! and for self-gravitating
systems the thermodynamical limit does not exist. Herea
a system will be considered as ‘‘Small’’ if the range of th
forces is of the order of the system size~e.g., metallic clus-
ters, nuclei, and self-gravitating systems! and also if the sys-
tem has no proper thermodynamical limit~e.g., unstable sys
tems@42# and also self-gravitating systems!.

In a recent paper@34# definitions of pure~single! phases
and phase transitions~first and second kind! based on the
local topology of the microcanonical entropy surface ha
been proposed. In the following we first fix some notatio
and then recall the definitions.

Consider the ME of an isolated physical system. Its as
ciated entropyS(X) is a function ofM ‘‘extensive’’ dynami-
cal conserved quantitiesX5$X1, . . . ,XM%. Note thatX may
not containall the dynamical conserved quantities and
simplicity all these parameters are considered as being
tinuous. The Hessian matrix ofS(X5X0) is noted by
HS(X0)5i]2S/]Xi]Xj iX0

, its eigenvalues are$l1 ,•••,lM%,

wherel1>l2> . . . >lM and the determinant ofHS(X) is
DS5l1 , . . . ,lM .

In @34# phase transitions are defined ‘‘by the points and
regions of non-negative curvature of the entropy surfa
@•••# as a function of the mechanical quantities.’’ Therein
the sign ofDS is put forward as a measure of the concav
of S ~its negative curvature!, so that at first order phase tran
sition

sgn~DS!5sgn@~21!M11#. ~11!

Though this condition isnecessaryit is not sufficientin the
general case. In factS is a nonconcave function atX0 if

l1~X0!>0, ~12!

i.e., if at least one eigenvalue ofHS is non-negative. Note
that in the two-dimensional sample model studied in@34# in
order to illustrate the definition~11!, l2 is always negative
and therefore the sign ofDS is simply the opposite of that o
l1, and the conditions~11! and ~12! are equivalent.

Note that if M51 then l15]2S/]E2}2Cv
21 , where

Cv
21[ ]T(E)/]E is the microcanonical heat capacit

Hence, forM51, l1 and the heat capacity are of oppos
sign.
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By using sgn(l1), one can somewhat extend or clarify th
classification of phase transitions for ‘‘Small’’ systems wh
the entropy is a function ofM>1 variables.

~1! A single pure phase ifl1(X0),0, i.e., if the entropy
surface is locally concave atX0. ForM51 this corresponds
to a positiveheat capacity.

~2! A first order phase transition ifl1(X0).0. For M
51 this corresponds to anegativeheat capacity. As men
tioned in@34,43# the depth of the associated entropy intrud
is a measure of the interphase surface tension in the cas
systems with short-range interactions. How to define a
measure these depths whenM.1 will be discussed else
where. Note that some eigenvalues might still be nega
althoughl1(X0).0 just like in the model presented in@34#.
In this case ‘‘good’’ order parameters are linear combinatio
of the eigenvectors whose eigenvalues are positive, see@44#.

~3! If l1(X0)50 andl1 is the only zero eigenvalue, an
¹v1

l150, wherev1 is the eigenvector associated withl1,

then there is a second order phase transition atX0. For M
51 this correspond to]2S/]E250 and]3S/]E350.

~4! If several eigenvalues obeyl i50 and“vi
l i50 for

i 51, . . . ,n<M thenX0 is a multicritical point.

C. Momentum average and dispersion

In this section we derive the average and the dispersio
the linear momentum of a particle, we also compute its m
angular velocity and relate it to that of the system as defi
in Eq. ~8!.

The derivation of̂ pk&qk
, the average momentum of pa

ticle k at fixed positionqk ~while the other particles are free!,
is similar to that ofW. Details of the derivation can be foun
in the Appendix and the result is

^pk&qk
5L^I 21&qk

mk (
a,d51

2

eadqk
dêa , ~13!

wheree is the antisymmetric tensor of rank 2 andêa is the
unit vector of coordinatea. Equation~13! shows that̂ pk&qk

is a vector perpendicular toqk whose module is a function o
iqki . In other words the orbit of a particle is, on an averag
circular ~this result is expected since the system is rotati
ally symmetric!. One can computêvk&qk

, the mean angular

velocity of k at distanceiqki , by first considerinĝLk&qk
, the

mean angular momentum ofk at distanceiqki ,

^Lk&qk
[qk3^pk&qk

5L^I 21&qk
I k , ~14!

whereI k5mkqk
2 . The angular mean velocity of a particle o

a circular orbit is classically linked tôLk&qk
by

^Lk&qk
5^vk&qk

I k . ~15!

We can identify^vk&qk
in Eq. ~14! as

^vk&qk
5L^I 21&qk

. ~16!
3-3
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The dependence of̂v&qk
on uuqkuu is of the order of 1/N

@^I 21&qk
5^I 21&1O(N21)#, therefore for largeN we can

write @see Eq.~8!#

^vk&qk
;L^I 21&'^v&. ~17!

For largeN the mean angular velocity is the same for all t
particles at any distance from the center; in other words,
system, on an average, rotates like a solid body. Moreo
^vk&qk

corresponds to the thermostatistical angular veloc

v defined by Eq.~8!. These are also classical results f
extensive systems at lowL @39,45#. Note also that these re
sults do not depend on the interaction potentialw.

The momentum dispersionspk
can also be derived. Usin

Eqs.~13! and ~A5!, we get for largeN

spk

2 [^pk
2&qk

2^pk&qk

2 ;2
mk

b
1I kL

2mk~^I
22&2^I 21&2!.

~18!

The second term of Eq.~18! is intensive and proportional to
the square of the dispersion ofI 21 and to qk

2 (I k5mkqk
2).

When this term vanishes relative to the first one, e.g., w
the fluctuations ofI 21 are small, or at high energy~low b)
and lowL, we recover the usual dispersion of the Maxwe
Boltzmann distribution. This term also gives a correction
the usual equipartition theorem; for largeN

^Ek&[
spk

2

2mk
;T1

I kL
2

2
~^I 22&2^I 21&2!, ~19!

where ^Ek& is the average internal kinetic energy~without
the contribution from the collective, hydrodynamical, rot
tional movement! of particle k. Again this correction is
position-dependent viaI k . In regimes where the fluctuation
of the mass distribution cannot be neglected in Eqs.~18! and
~19!, an estimation of the temperature based on the velo
dispersion would show that the temperature is smaller at
center than at the edge.

D. Numerical method

From now on we set mi5m; i 51, . . . ,N and
use the following dimensionless variables:~i! E→e5ER/
Gm2N2; ~ii ! L→ l 25V5L2/2Gm3RN2; ~iii ! s→s5s/R;
~iv! q→r 5q/R; ~v! Vc→vc ; ~vi! w→f5(R/
Gm2N2)w5(21/N2)( i , j1/As21(r i2r j )

2); ~vii ! I→I
5( i r i

2 . The weight~5! is now

W~e,V!5C8E
vc

dr
1

AI
e r

N25/2, ~20!

where e r5e2V/I 2f is the dimensionless remaining e
ergy andC8 is a constant. Later on we no longer write th
constant since it plays no significant role~it only shifts the
entropy by lnC8). The derivatives of entropy (b, v, . . . !
are now dimensionless.
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One usually estimates Eq.~20! by means of some Monte
Carlo algorithm, updating the positionsq by some small
amountdq in order to get a good pass acceptance, and us
the configuration weightW(r)5(1/AI )e r

N25/2 in the Me-
tropolis pass. Unfortunately this strategy does not rea
work ~within a reasonable CPU time!, because the
2N-dimensional configuration weight landscape at fixede
andV presents troughs and high peaks@46#. Hence, explor-
ing the total configuration space~or at least a subset contain
ing the highest peaks! would take a very long, in practice
infinite, time. This weight landscape looks like the ener
landscape found in spin-glass systems.

The strategy we have adopted is described in the follo
ing. First we can rewrite Eq.~20! as

W~e,V!5E dIdfD~ I ,f!
1

AI
e r

N25/2, ~21!

where D(I ,f)5*vc
drd(I 8(r)2I )d„f8(r)2f…. D(I ,f) is

the density of spatial configurations at givenI andf. Given
D we can computeW, S, and its derivatives foranye andV,
e.g.,

g5
1

b

]S

]V
52

N25/2

b

E dIdfD~ I ,f!I 23/2e r
N27/2

W~e,V!
.

~22!

The expectation valuêO& of an observableO(r) can be
estimated if we knowD and ^O& I ,f ,

^O&[

E
vc

drO~r!I 21/2e r
N25/2

E
vc

drI 21/2e r
N25/2

5

E dIdf^O& I ,fD~ I ,f!I 21/2e r
N25/2

W~e,V!
, ~23!

where

^O& I ,f5

E
vc

drO~r!d~ I 82I !d~f82f!

D~ I ,f!
. ~24!

Now, we have to computeD(I ,f) and ^O& I ,f . A priori
D(I ,f) is highly peaked around the values ofI and f that
describe the gas~disordered! phase and should drop down
the edges. Nevertheless in order to study the total param
space (e,l ) a good estimate ofD(I ,f) is needed for almos
all values taken by (I ,f) even whenD(I ,f) is very small
compared to its maximum. For example, at small total
ergy e only the part ofD(I ,f) for which e r5e2 l 2/I 2f
.0 will contribute to the integral~21!.

In order to get a good estimate ofD we used an iterative
scheme inspired by multicanonical algorithms@47–50#. The
standard multicanonical task is to compute the free energ
3-4
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a function of the total energy. Here we have to computeD as
a function ofI andf. The updating scheme presented in@50#
was used; one of the reasons for this choice is that altho
it has been given for a one-dimensional task it can be tr
ally extended to bivariate problems. Furthermore, we ad
a blocking mechanism: once we estimate that enough in
mation has been collected on a given region of the param
ric space (I ,f) then it is tagged as ‘‘locked’’ so that it wil
not be visited during the following iterations. This mech
nism enables the program to spread more quickly over
parametric space and save computation time comparin
usual multicanonical algorithms. Details on this blocki
mechanism are given elsewhere@44#.

In the present paper we present results forN520 ands
50.05. Figure 1 shows a slice ofD(I ,f) for I 53 at differ-
ent iteration stepsi @Fig. 1~a!#. We have also plotted the
histogramC(I 53,f) of the visited region in order to illus
trate the blocking mechanism@Fig. 1~b!#. As expectedD is
strongly peaked around the disordered regionf'21 ~this
value corresponds to the mean off over randomly generate
spatial configurations!. After ten iterations the ratio betwee
the maximum and the minimum ofD is 'exp(120). This
ratio increases exponentially withN, e.g., atN510 its value
is 'exp(80). This is the main reason why we could not stu

FIG. 1. Estimate of the density of stateDi(I 53,f) ~a! and
histogram of the visited statesCi(I 53,f) ~b! at different iteration
stepsi of the multicanonical algorithm as a function of the potent
energyf and at fixedI. Panel~a! shows howD is built step by step;
D is an extremely peaked function, the logarithm of the ratio
tween its maximum and its minimum is about 120. Without t
blocking mechanism~see text! Ci would have been non-null for al
values off visited during previous stepsj , i . In panel~b! we see
that the algorithm does no longer visit ‘‘well-known’’ regions (f
*21.5) already after four steps.
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systems with largerN within the current algorithm, but we
should add that no qualitative changes have been noted
tweenN510 andN520 ~some preliminary studies suppo
this remark forN550). Work is in progress to overcome th
limitation, though we are convinced that qualitatively th
results presented in the following apply to systems with
larger number of particles.

III. RESULTS

A. Entropy and its derivatives

Figure 2 shows the entropy surfaceS as a function ofe
and V5 l 2, the square of the unitless angular momentuml.
The ground-state energyeg(V) ~thick line in Fig. 2! in-
creases withV; eg classically corresponds toe r50 implying
S52`. For all V, eg(V) is a concave function ofV, i.e.,
]2eg /]V2<0; at high V (V*12) it is almost linear
]2eg /]V2→02. These properties show that the set$e,V%
over whichS is defined isnot convex@51#, and in Sec. III D
we discuss some consequences resulting from a nonco
domain of definition.

At fixed V, S(e) is not concave for alle but shows for
some energy interval a convex intruder, which signals a fi
order phase transition with negative specific heat capa
(]b/]e.0) @35#. This can be better viewed by plottin
b(e,V)5]S/]e ~Fig. 3!. Here the counter part of the en
tropy intruder is a region of multiple valuede(b), this is the
case forb between 15 and 20.

The latent heat at fixedV, qe(V) decreases for 0<V
&12 and is a constant forV.12. There is no critical value
of V, Vc above whichS(e) is concave for alle, i.e., there is
a first order phase transition of all values ofV. In another

l

-

FIG. 2. Entropy surfaceS(e,V5 l 2) ~up to an arbitrary addi-
tional constant!, the mesh lines are at constante or constantV. The
thick line is close to the projection of theT50 (S→2`) isotherm.
A convex intruder at constantV and for a certain energy rang
~e.g.,22&e&0 for V520) can be seen for allV. S is not defined
in the forbidden region, there the remaining energye r is negative
for all qPvc .
3-5
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model for a self-gravitating system such aVc was report-
ed @26#.

In Fig. 4 we have plotted the microcanonical angular v
locity v as a function ofV ande. As a direct consequence o
Eq. ~8! v tends to zero withV, and at high energyv is
proportional toAV (} l ). For low energies andV,12, v
exhibits some structures with peaks and troughs, in o
words at fixede, v is not necessarily an increasing functio
of V. At high V (V.12) and near the ground statesv is

FIG. 3. Inverse temperatureb(e,V5 l 2) surface. The mesh
lines are at constante or constantV. The intruder inS at fixedV
corresponds here to a multiple energy value for a givenb andV,
e.g., b(e,V50)520 has three solutionse1'0, e2'21, ande3

'26. The thick line is close to the projection of theb5` iso-
therm;b is not defined in theforbiddenregion.

FIG. 4. Microcanonical angular velocityv(e,V5 l 2) surface.
The mesh lines are at constante or constantV. v is not defined in
the forbiddenregion. At high energyv}AV; near the ground state
v shows a richer nonmonotonic behavior with peaks and trou
for small V and has a nearly constant value for largeV ~see text!.
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almost a constant. All these structures can be understoo
terms of mass distributions, which influencev throughI ~see
Sec. III B!.

B. Mass distribution

In order to understand the origin of the structures seen
the different microcanonical quantities (S, b, v, . . . ) we
have to have a closer look at the spatial configurations,
at the mass distributions. One observable we have studie
the mass densityr @see Eqs.~23! and ~24!#. As the Hamil-
tonian of the system is rotationally invariant, the mean va
of r can only be a function ofr, the distance from the cente
of coordinates, although other observables, e.g., two-b
correlations might show a breaking of the rotational symm
try ~see below!.

On Fig. 5 r is plotted for different energies and forV
50 andV54. ForV50 @Fig. 5~a!# we recover the classica
case~whenE is the only fixed parameter!. At high energy the
system is in a homogeneous gas phase~flat r); when the
energy decreases the system undergoes a phase transitio
eventually ends up in a collapse phase where a majority
particles are in a cluster near the center of coordinatesr
peaked atr 50). For VÞ0 @Fig. 5~b!# the situation is very
different. At high energy we recover the homogeneous
phase. But at low energy the system cannot collapse ent
at the center of mass. This is due to the rotational ene
e rot5V/I in Eq. ~5!. If the system contracts at the center, t
inertial momentumI will tend to zero and, therefore,e rot
will diverge leading to a negative remaining energye r . So
depending on the value ofV the main cluster will eject a
s

FIG. 5. Densityr as a function of the distance from the center
at different values of energye and angular velocityV ~arbitrary
units!. At high energy and for allV the density is flat; the system i
in the homogeneous gas phase. Near the ground state the de
shows one peak forV50 ~a! and two peaks forV.0 ~b!, which
correspond, respectively, to a one-cluster and to a two-cluster p
surrounded by some gas~see text!.
3-6
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FIG. 6. Average ofP(d), the distance distri-
bution, for different simulated spatial configura
tions. See text.
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certain amount of particles in order to increaseI. Near the
ground state these ‘‘free’’ particles will eventually collapse
form a second cluster in order to decrease the potential
ergy f. Due to the conservation of the center of mass,
position of the biggest cluster will be shifted from the cen
by a certain amount@see Fig. 5~b! at e525#. At low V one
particle will be ejected, with increasingV the number of
ejected particles raises and this process stops when
equal-size clusters are formed. This explains the discrete
of the peaks inv ~Fig. 4! and the increase of the ground sta
energyeg(V), because the potential energy of a single cl
ter of sizeN is smaller than that of two well separated clu
ters. At high (V*12) the system undergoes a phase tran
tion from a gas phase to a collapse phase with two equal-
clusters close to the boundary. From one value ofV5V1
.12 to another oneV2.V1, the whole entropy curve a
fixed angular momentum is simply shifted along the ene
axis, i.e.,S(e,V1)'S(e1@V22V1#/N,V2). So the ground
state energyeg(V) at highV is almost on the line of equa
tion eg1V/N1fg'0, whereV/N andfg are the rotational
energy and the potential energy of two clusters of sizeN/2 at
radius r 51, respectively. This monotonic behavior has
ready been mentioned for all the thermodynamical variab
S ~Fig. 2!, b ~Fig. 3!, v ~Fig. 4!, etc.

As already mentionedr is only a function ofr and it
cannot be used to infer the angular distribution of the p
ticles, i.e., there is not enough information to say if a peak
r at r 0Þ0 corresponds to one or many-cluster or to a u
form distribution of the particles~ring! lying on a circle of
radiusr 0. However at least at very low-energy a many clu
ter ~more than two! configuration is very unlikely and will
not contribute to the average values for reasons linked to
weight W(r)5(1/AI )e r

N25/2. For simplicity let us assume
that there is only one strong peak inr at r 5r 0Þ0. Since the
center of mass is fixed this cannot be the signature o
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one-cluster system. At least two-clusters lying on a circle
radius r 0 are needed. All thesen-cluster systems have th
same rotational energyV/I 5V/Nr0

2, but their corresponding
potential energyfn will differ. For example, withs50.05,
r 050.5, andN524 the ratio of potential energy isf2 /f3
.1.7. So at low energy, the remaining energye r correspond-
ing to a two-cluster system will be much larger than t
three-cluster one, leading to ahugedifference in the weight
W(r). So at low energy and forVÞ0 the two-cluster case is
dominant. At higher energies, the termD(I ,f) in Eq. ~21!
can compensate for the difference in the weightW(r) and
allow many-cluster configurations and eventually at high
ergy, a complete random configuration on the ring of rad
r 0 will dominate the average mass distribution.

We can check this argument by studying another obse
able, for example, the normalized distance distributionP(d),
i.e., the density of probability that the distance between t
given particles isd. To probe the information given byP(d)
we have estimated it for four simple mass distributions:~a!
two-clusters,~b! three-clusters,~c! a ring, ~d! a uniform ran-
dom distribution. For~a!, ~b!, and~c! the particles were pu
on a circle of radiusr 050.5, and then randomly shifted sev
eral times~in order to give a spatial extension to these id
alized initial configurations!; finally theN(N21)/2 distances
are recorded for all realizations and averaged. Figure
shows the average ofP(d) over 1000 realizations. Note tha
the density distributionr(r ) is by construction exactly the
same for the first three cases, i.e., strongly peaked atr 0 with
a width of about 0.5. The latter value depends on the s
one applies on the initial idealized spatial configurations.

As one can see in Fig. 6, although the density distribut
is the same for~a!, ~b!, and~c!, P(d) gives some new insigh
on the mass distribution.

~a! There are two peaks, one centered at smalld, which
corresponds to a clusterization, and another one atr .1
52r 0; this is exactly the distance between the two clust
3-7
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FIG. 7. Distance distributionP(d) for the
gravitational case for different values of (e,V).
At high energyP(d) corresponds to a random
distribution ~see Fig. 6!. For V50 and at low
energy,P(d) has one peak atd'0; almost all
particles are very close to each other and there
a single-cluster collapse phase. ForVÞ0 there
are two peaks at low energy: one at very smalld,
which is a sign of clusterization, and anoth
peak at larged, which signals multiple clusteriza
tion; in fact there are two clusters~see text!.
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~more precisely between their center of mass!. The area un-
der the smalld peak is similar to that under the larged peak.
Indeed the number of short distance pairs and the numbe
pairs withd.1 are both aboutN2/4. Moreover the widths of
the first and second peaks are~as expected! ;0.5 and;1
5230.5 respectively.

~b! There are again two peaks, one at smalld and another
at d.0.8,1, and their respective widths are similar to tho
in ~a!. The larged is compatible with the length of one sid
of the equilateral triangle on top of which the three-clus
mass distributions were built. This time the area under
larged peak is larger than that under the shortd peak, since
the number of short distance pairs is aboutN2/6 whereas the
number of pairs withd.0.8 isN2/3.

~c! For the ring case a trace of the two peaks still exi
but they are not well separated because a lot of intermed
distances are compatible with this model.

~d! When the particles are uniformly distributedP(d) has
a binomial-like shape.

We have also estimatedP(d) for our gravitational system
as shown in Fig 7. At high energy,P(d) corresponds to the
randomly distributed case~see Fig. 6!. At low energy with
V50, P(d) has only one peak atd50, this corresponds
clearly to a single-cluster case surrounded by some gas.
VÞ0 and at low energy~in Fig. 7,e525 andV54), there
are two well separated peaks, one at smalld050 and the
other atd1.1.1. The peaks imply the presence of at le
two clusters, however the fact that the widths of the pe
are small excludes a large number of clusters and even m
so the ring case~see Fig. 6!. Now we can combine thes
informations with those obtained fromr(r ) ~see Fig. 5!. For
e525 andV54, r has two peaks atr 1.0.15 andr 2.1.
All in all, this means that there are, on an average, mean,
clusters rotating around the center of mass. The distance
tween these clusters isr 11r 2.d1.1.15. Due to the fixed
center of mass their mass ratio ism2 /m15r 1 /r 2.0.15.
Since we know the total massm11m2520 we getm1.17
andm2.3.
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The distance distribution can be of great help to ident
the mass distributions at low energies. However in the tr
sition region since there is a superposition of different typ
of mass distributions, the knowledger andP(d) is not suf-
ficient and, therefore, of no help if we want to study, f
example, the ‘‘fractality’’ of the mass distribution as has be
discussed in other self-gravitating systems@52–54# ~not
mentioning the fact that the actual number of particles in
presented numerical applications is too small!, and further
work is needed to get a more detailed picture.

At very low energy, near the ground state at least one
the clusters~the smallest! is very close to the boundary
There the assumption of a small evaporation rate mad
Sec. I does not hold.

C. Phase diagram

In Fig. 8 we have plotted sgn@l1(e,l )# as defined in Sec
II B. This plot can be taken as the phase diagram of
self-gravitating system at fixede and l. The white regions
correspond to pure phases (l1,0). At high energy there is a
homogeneous gas phase and at low energy there are se
pure collapse phases with one (V50) or two (VÞ0) clus-
ters. The different two-cluster phases are characterized by
relative size of their clusters~see Sec. III B!. These regions
are separated by a first order phase transition region w
l1.0 ~gray in Fig. 8!. There is even a region~dark gray!
where the entropyS is a convex function ofe and l; i.e., all
the eigenvalues ofHS are positive (l1.0 andDS.0). This
region is quite stable with respect to the number of partic
~at least forN,100). Its specific surface increases sligh
with the number of particlesN. The orientation ofv1, the
eigenvector associated withl1, is not yet known in detail for
all (e,l ). However, we can already state that at high ene
v1 is almost parallel to the energy axes and should be par
to the ground state at very low energy. The overall struct
of the collapse phases matches that of the angular velociv
~see Fig. 4!. Roughly, the peaks inv correspond to pure
3-8
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phases while the valleys between these peaks belong to
first order phase transition region.

As already mentioned, unlike in the model presented
Laliena in @26#, there is no critical angular momentumLc
above which the first order phase transition vanishes giv
rise to a second order phase transition atLc . Nevertheless
this does not exclude second order phase transition~critical
point! at all. They are defined in the microcanonical e
semble by~i! l150, ~ii ! “l1•v150 ~see Sec II B!. In Fig. 9
~just like in Fig. 8! regions wherel1,0(.0) are in white
~gray!. The condition~i! is simply achieved at the borde
between the gray and the white regions@l1 is a continuous
function over the whole parametric space (e,l )#. The thick
lines on Fig. 9 correspond to condition~ii !. Second order

FIG. 8. Sign of the largest eigenvaluel1 of HS , the Hessian
matrix of S, as defined in Sec. II B. The white regions correspond
l1,0. These are pure phase regions. The gray region corresp
to l1.0 andl2,0 and the dark gray ones also tol1.0 but with
l2.0. l2 is the second eigenvalue ofHS . l1.0 defines first order
phase transition regions~see text!. Points in G ~the region filled
with dashed lines! correspond to local maxima ~minima! of
f (X,X0)52x0X1S(X) if l1(X0),0 @l1(X0).0#, see Eq.~25!.
Points outsideG correspond to theglobal maxima of f (X,X0).
There is a one-to-one mapping between the microcanonical an
canonical ensembles only outside theG region ~see text!. S is not
defined in theforbiddenregion, here in light gray. Note that~a! the
points atV50 and low energiese,27 are not included inG, ~b!
the high energy limit ofG is known only approximately.

FIG. 9. Locus of second order phase transitions~see text!.
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phase transitions are located at the crossing points of
thick lines and the borders. One immediately sees that th
are several critical points. However there are not all
~astro-! physical interest since most of them are close to
ground state line or at very high angular momentum wh
the small evaporation rate assumption is not valid. Nevert
less there are two points, one at (e,V)'(20.5,1) and an-
other one at (e,V)'(20,4), where this assumption is vali
and, therefore, they deserve further investigations, espec
regarding their corresponding mass distributions.

D. Loss of information in canonical ensembles

Once one defines the generalized microcanonical
semble~ME!, it is straightforward to introduce and study th
system in its conjugate ensemble, the generalized canon
ensemble~CE!. Note that ‘‘generalized’’ means in CE ‘‘as
function of all the intensive variables’’ and, in ME ‘‘as
function of all extensive parameters.’’ There are mainly tw
reasons for studying a system in CE instead of in ME

~1! Performing the computations in CE is in most cas
much easier than in ME. Here CE can be seen as a trick@55#.
However there isa priori no reason for the results to b
equivalent. Indeed the strict equivalence of the ensembl
only achieved at the thermodynamical limit except in the fi
order phase transition regions@35,34,45#. In a weaker sense
needed for ‘‘Small’’ systems, ME and CE can only b
equivalent whenl1(X),0 and far from any first order phas
transition regions~see below!. Moreover recent progress i
computer performance now enables one to perform num
cal experiments within the ME for increasingly complex sy
tems.

~2! The studied system is not isolated but is in cont
with a ‘‘heat bath’’ and can exchange amounts ofX with it.
Then, obviously ME does not provide a suitable descripti
and CE might be eligible. Here CE describes adifferent
physical system than that in ME. At the thermodynamic
limit ~if it exists! the ensembles are again equivalent exc
at first order phase transitions. However, the CE descrip
is valid only if the Hamiltonian of interaction,Hint , is small
compared to those of the system,Hsys, and the heat bath
Hhb . This condition is usually fulfilled at the thermodynam
cal limit ~if it exists!, but for ‘‘Small’’ systems the Hamil-
tonian of interaction,Hint , can hardly be small at least com
pared toHsys and this can lead to dramatic effects@56,57#. In
this case a better description would be the ME of the syst
its heat bath, and their interactions.

For now on we consider in this paper the cases when
is used as a mathematical trick, and we focus on the amo
of information lost from ME to CE.

The link between ME and CE is given by the Lapla
transform~using the notations introduced in Sec. II B!

Z~x!5E
0

`

dXe2Xx1S(X), ~25!

whereZ is the partition sum of the CE,x5$x1, . . . ,xM% are
the intensive variables associated withX and defined by

o
ds

he
3-9
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xi[
]S

]Xi
~26!

for i 51, . . . ,M. The ME atX0 is equivalent to the CE a
x05x(X0) if the integrand in Eq.~25!, ef (X,x0), and therefore
f (X,x0)52Xx01S(X) has aglobal maximumat X0 @44#.
This condition is violated whenl1(X0).0 ~this is the basic
idea behind the definition of phase transitions in ‘‘sma
systems, see@34#!. So in practice all informations are con
tained in points wherel1.0 are lost after the Laplace tran
form ~25! in CE.

Now we are left with the pointsX0 characterized by
l1(X0),0. This relation implies only thatf (X,x0) has a
local maximum atX0 but not that it is aglobal one;l1,0 is
a necessary but not sufficient condition. In Fig. 10 we ha
illustrated this point with a trivial one-dimensional examp
All the points below the Maxwell line do not correspond
global maxima and their information content is smeared
and, in practice, lost in CE.

From the last remark we see that a way to check if a po
corresponds to a global maximum in Eq.~25! is to study
what would be a generalization of the Maxwell line inM
.1 dimensions. Work is in progress in this direction and
results will be presented elsewhere, but we can already s
that this task is, to some extent, similar to that of building
convex hullof a set of points inM dimensions, or more
specifically the convex hull of the entropyS.

However, if one needs qualitative results, in two dime
sions the task can be rather easily solved in another way.
us definep(X,X0) as the tangent plane toS(X) at X0; its
equation isp(X,X0)52Xx01S(X0)1X0x0. If f (X,x0) has
a global maximum atX0 then

FIG. 10. Schematic entropy curveS as a function of one exten
sive parameterX ~solid line! and the Maxwell line~dashed line!. A
andD are the end points of the Maxwell construction. AtB andC
the largest curvature vanishes, i.e.,l150. All the points below the
Maxwell line do not correspond to a global maximum in t
Laplace transform, Eq.~25!. This includes points wherel1

5]2S/]X2.0, but also points where the entropy is concave,
XP@XA ,XB# andXP@XA ,XB#, l1(X),0.
04614
e
.

t

t

e
te

e

-
et

p~X,X0!.S~X! ~27!

for all XÞX0 andp(X0 ,X0)5S(X0) by definition.
In the case of the gravitational model presented hereX

5$e,V% and x5$b,gb% ~GBE!. Now if one inspects the
entropy surfaceS(X) ~see Fig. 2! it is clear that condition
~27! is not satisfied for all the points in the region filled wit
dashed lines~G! in Fig. 8. This is due to the concavity of th
energy ground stateeg(V) ~see Sec. III A!. G includes all
the two-cluster collapsed phases and the first and secon
der phase transitions~except forv5V5g50). All the in-
formation contained inG is smeared out through the Laplac
transform~25! in GBE and is, in practice, lost.

The fact that GBE misses all the two-cluster collap
phases would be already enough to disqualify it as bein
good approximation~mathematical trick! of the ME. But,
furthermore, if one studies more carefullyf (X,x0), X0PG;
one will notice that~a! there is one local maximum atV
50 and~b! there is no maximum for highV: in the direction
of increasingV at low energy,f (X,x0) is a never ending
increasing function, i.e.,f (X,x0) hasno global maximumfor
X0PG ~see Fig. 11!. Therefore the integral in Eq.~25! di-
vergesfor all x0 , X0PG. In other words the GBE, in ou
model, isnot definedfor high b andgÞ0 (vÞ0).

One could argue that GBE is not the correct CE for t
system. I.e., one should rather fix the conjugates ofe and l,
as the inverse temperatureb and the angular velocityv,
respectively. By following the same path as for GBE one c
show that contrary to GBE, the standard canonical ensem

r

FIG. 11. f (e,V,b0 ,g0)52eb02Vb0g01S(e,V)2K as a
function of e and V, where K is an arbitrary constant,b0

5b(e0 ,V0), V05V(e0 ,V0), X05(e0 ,V0)5(23,5)⇒(V0 ,g0)
'(27.9,20.196). The mesh lines are at constante or constantV.
As expectedf has a saddle point atX0'(b0 ,g0) sincem(X0).0
and DS(X0),0 ~see text and Fig. 8!. f has a global maximum a
V50 ande'27, but one sees that it is a monotonically increasi
function for increasingV ande(V)'eg(V)12. Therefore the in-
tegral in Eq.~25! divergesand the (b,gb) ensemble isnot defined
for (b0 ,g0).
3-10
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is defined everywhere. However, one can also show tha
point X05(e0 ,l 0) in the region wheree&0 and l &5 ~it
includesG, see Fig. 8! corresponds to a global maximum o
the function f (e,l ,b0 ,v0)52eb02 lb0v01S(e,l ). This
implies that all the asymmetric pure phases are overloo
by CE. In other words they do not correspond to glob
minima of the canonical free energy. This is also the case
the two critical regions at relatively high energies.

These examples show how dramatic can the informa
loss be if one studies an isolated system as a function
intensive parameters.

IV. SUMMARY AND DISCUSSION

A. Summary

The aim of this paper is to present the results of a stud
a self-gravitating system ofN classical particles on a disk o
radius R for which two extensive variables, namely, tot
energyE and total angular momentumL are fixed. The mi-
crocanonical entropyScan be written as the logarithm of a
integral over the spatial configurations~3! and~5!. The con-
servation ofL implies that the mean value of the linear m
mentump of a particle at a radial distancer is proportional to
L and r, Eq. ~13!; on an average the system rotates like
solid body, i.e., the mean angular velocity of a particle do
not depend on its position~17!. The dispersion ofp is
broader than what it would be ifL is not be conserved an
depends on the radial position~18!. In order to integrateeS

we write it as the folding product of a ‘‘background’’ func
tion D and the weight associated with the remaining ene
~21!. Once a numerical estimate ofD is obtained,S and its
derivatives, such as the inverse temperatureb, can be com-
puted. The entropy surface shows an intruder in the ene
direction, which signals a first order phase transition w
negative specific heat capacity~Figs. 2 and 3!. Contrary to
another model@26# there is no critical value ofL above
which this transition is no longer present. At high energy
angular velocityv is a simple increasing function ofL @Eq.
~8! and Fig. 4#, but at low energy, near the ground states,
relation betweenL andv becomes nontrivial. All these pe
culiarities can be understood if we study the mass distri
tion. We use two observables: the density of mass,r, as a
function of the radial distance andP(d), the density prob-
ability that the distance between two particles isd. At fixed L
and at high energy the particles are randomly distribu
over the disk~gas phase!. If the energy decreases, belo
some threshold the system undergoes a phase transitio
first order to a collapse phase. IfL50 there is a single clus
ter at the center of mass, ifLÞ0 then there are two cluster
rotating around the center of mass. Their relative m
m1 /m2 with m1.m2 is very large for lowL, it decreases as
L raises and eventually becomes 1 forL larger than a certain
threshold. Clearly these two clusters phases were not
ported in previous work because of the usuala priori as-
sumption of rotational symmetry.

Phase transitions~and phases! can be defined unambigu
ously in the microcanonical ensemble as a function of
local topology of S. If all eigenvalues ofHS , the Hessian
matrix of S, are negative then the system is in a pure pha
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If ~at least! one eigenvalue is positive, sayl1, then there is a
first order phase transition in the direction ofv1, the eigen-
vector associated withl1. A critical behavior occurs when
one~or many! eigenvalue vanishes on at least a second or
region~if l150, “v1

l150). Note that one can find positive
negative, and zero eigenvalues at the same point in the
rameter space. Using these criteria, we can draw a ph
diagram of the gravitational system~Fig. 8! at fixedE andL:
at high energy there is a pure gas phase; at low energy t
are several pure collapse phases, there is one clusterL
50, and there are two clusters forLÞ0, these phases ar
separated by first order phase transition regions. There
also several second order phase transitions, two of them
located at relatively high energies (E'0) and, therefore,
may be of astrophysical importance.

Studying an isolated system using the CE can be v
misleading, since there is a massive loss of information fr
the correct ME description to that of the CE~if there are
phase transitions in ME!. In fact for the gravitational model
CE cannot be sensitive to the asymmetric two-cluster pha
and all the phase transitions, and theg-b ensemble~GBE!
as defined in Sec. III Dis not defined for some values of th
intensive parameters that exist in ME.

B. Discussion

Of course we have just presented anequilibrium statisti-
cal model that may help to understand the physics of glo
lar clusters or collapsing molecular clouds, but the resu
should be interpreted with caution especially in the case
star formation. A lot of ‘‘ingredients’’ are missing in order t
have a complete picture of the formation of multiple sta
systems and planetary systems, for instance, the mag
field @58,59# or the presence of vortices@60#.

Phases and phase transitions can be well defined in
ME without invoking the thermodynamical limit by probin
the curvature of the entropy surface. There still exist op
problems. One of them is the scaling of a first order tran
tion: in Fig. 10, in a canonical sense the phase transi
occurs fromXA to XD ~if X is the energyE thenXD2XA is
the transition latent heat!, but if one uses the ME definition
the transition occurs only fromXB to XC . At the thermody-
namical limit, if it exists, such discrepancy should disappe
In another context~a model of a first order liquid gas trans
tion of finite-size sodium clusters! we could show that (XC
2XB)/(XD2XA)→1 when the system size goes to infini
@44#.

The ME definition of phase transitions offers a rich
view of physical systems and phase transitions. Again in F
10, CE is not sensitive to everything that could happen un
the Maxwell line: there is always one transition. On the co
trary, in ME there could be many phase transitions betw
XA andXD . For example, if there is a small positive curv
ture bump betweenXB and XC there would be two transi-
tions in the microcanonical sense but still one in the cano
cal sense.
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Let us computê pk&qk
the average momentum of particlek at fixed position~for simplicity we will set k51). The a

component of̂ p1&q1
is

^p1
a&q1

5

E S )
i

dpi)
i 52

N

dqi D p1
ad~E2H!d (2)S (

i
pi D dS (

i
qi3pi2L D d (2)S (

i
qi D

E S )
i

dpi)
i 52

N

dqi D d~E2H!d (2)S (
i

pi D dS (
i

qi3pi2L D d (2)S (
i

qi D 5

E S )
i 52

N

dqi DP 1
ad (2)S (

i
qi D

E S )
i 52

N

dqi D W~r !d (2)S (
i

qi D ,

~A1!

whereP 1
a5*() idpi)p1

ad(E2H)d (2)(( ipi)d(( iqi3pi2L), andW(r ) is the microcanonical weight at a fixed spatial config
ration r , its value isW(E,L,r )5C(1/AI )Er

N25/2 @see Eq.~5!#. The outline of the derivation ofP 1
a is the same as in@26# for W,

and we get after some algebra

P 1
a5CLm1I 23/2(

d51

2

q1
dedaEr

N25/2, ~A2!

wheree is the antisymmetric tensor of rank 2. Using Eq.~A2! in Eq. ~A1! we get finally

^p1
a&q1

5

E S )
i 52

N

dqi D CLm1I 23/2(
d51

2

q1
dedaEr

N25/2d (2)S (
i

qi D
E S )

i 52

N

dqi D I 21/2(
d51

2

q1
dedaEr

N25/2d (2)S (
i

qi D 5Lm1^I
21&q1(d

q1
deda . ~A3!

Finally,

^p1&q1
5Lm1^I

21&q1(d,a
q1

dedaêa , ~A4!

whereêa is thea component’s unit vector.
^pk

2&qk
can be derived in a similar way and we get

^pk
2&qk

5
2mk

~N25/2!^Er21&qk

S 12
mk

M D2
mkI k

I ~N25/2!^Er21&qk

1I kL
2mk^I

22&qk
. ~A5!
c
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